Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway.
نویسندگان
چکیده
The Notch receptor is necessary for modulating cell fate decisions throughout development, and aberrant activation of Notch signalling has been associated with many diseases, including tumorigenesis. The E3 ligase MDM2 (murine double minute 2) plays a role in regulating the Notch signalling pathway through its interaction with NUMB. In the present study we report that MDM2 can also exert its oncogenic effects on the Notch signalling pathway by directly interacting with the Notch 1 receptor through dual-site binding. This involves both the N-terminal and acidic domains of MDM2 and the RAM [RBP-Jκ (recombination signal-binding protein 1 for Jκ)-associated molecule] and ANK (ankyrin) domains of Notch 1. Although the interaction between Notch1 and MDM2 results in ubiquitination of Notch1, this does not result in degradation of Notch1, but instead leads to activation of the intracellular domain of Notch1. Furthermore, MDM2 can synergize with Notch1 to inhibit apoptosis and promote proliferation. This highlights yet another target for MDM2-mediated ubiquitination that results in activation of the protein rather than degradation and makes MDM2 an attractive target for drug discovery for both the p53 and Notch signalling pathways.
منابع مشابه
Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain.
The cell fate determinant Numb influences developmental decisions by antagonizing the Notch signaling pathway. However, the underlying molecular mechanism of this inhibition is poorly understood. Here we report that the mammalian Numb protein promotes the ubiquitination of membrane-bound Notch1 receptor. Furthermore, Numb expression resulted in the degradation of the Notch intracellular domain ...
متن کاملATM activates p53 by regulating MDM2 oligomerization and E3 processivity.
Rapid activation of p53 by ionizing irradiation is a classic DNA damage response mediated by the ATM kinase. However, the major signalling target and mechanism that lead to p53 stabilization are unknown. We show in this report that ATM induces p53 accumulation by phosphorylating the ubiquitin E3 ligase MDM2. Multiple ATM target sites near the MDM2 RING domain function in a redundant manner to p...
متن کاملIdentification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis.
The insulin-like growth factor receptor (IGF-IR) plays several pivotal roles in cancer. Although most studies on the function of the IGF-IR have been attributed to kinase-dependent signaling, recent findings by our group and others have implicated biological roles mediated by ubiquitination of the receptor. As previously reported, the E3 ligases Mdm2 and Nedd4 mediate IGF-IR ubiquitination. Her...
متن کاملI-34: Steroid Hormone Signalling at the FetomaternalInterface
Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...
متن کاملRegulation of the Hippo signaling pathway by ubiquitin modification
The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 450 3 شماره
صفحات -
تاریخ انتشار 2013